STEVENS, D. S. & TIERSTEN, H. F. (1986). J. Acoust. Soc. Am. 79, 1811-1826.

TAKAGI, S. (1962). Acta Cryst. 15, 1311-1312.

TAKAGI, S. (1969). J. Phys. Soc. Jpn, 26, 1239-1253.

TAUPIN, D. (1964). Bull. Soc. Fr. Mineral. Cristallogr. 87, 469-511.

Acta Cryst. (1989). A45, 285-291

- TIERSTEN, H. F. & SMYTHE, R. C. (1979). J. Acoust. Soc. Am. 65, 1455-1460.
- ZARKA, A., CAPELLE, B., DETAINT, J. & SCHWARTZEL, J. (1987). Proc. 41st Annu. Frequency Control Symp., 27-29 May 1987, Philadelphia, USA, pp. 236-240.

The Incommensurate Misfit Layer Structure of (SnS)_{1.17}NbS₂, 'SnNbS₃'. I. A Study by Means of X-ray Diffraction

BY A. MEETSMA, G. A. WIEGERS,* R. J. HAANGE AND J. L. DE BOER

Laboratory of Inorganic Chemistry, Materials Science Center of the University, Nijenborgh 16, 9747 AG Groningen, The Netherlands

(Received 12 July 1988; accepted 25 October 1988)

Abstract

 $(SnS)_{1\cdot17}NbS_2$, $M_r = 334\cdot92$, is a compound with misfit layer structure consisting of two-atom-thick layers of SnS and three-atom-thick sandwiches of NbS₂ which alternate along the c axis. The lattices of SnS and NbS₂ both have C-centered orthorhombic unit cells which match along the b and c axes but not along the *a* axes. The unit cells and space groups are a = 5.673(1), b = 5.750(1), c = 11.760(1) Å, space group C2mb (no. 39), Z = 4, for SnS; a =3.321(1), b = 5.752(1), c = 11.763(1) Å, space group Cm2m (no. 38), Z = 2, for NbS₂. From the ratio of the lengths of the a axes of the two parts of the complete structure (5.673/3.321 = 1.708 being irrational) one obtains a composition $(SnS)_{1.17}NbS_2$. The structure determination consisted of three parts: the structures of the SnS and NbS₂ parts separately and their relative position. Intensities were measured with Mo $K\bar{\alpha}$ radiation ($\lambda = 0.71073$ Å) at T = 293 K, $\mu =$ 102.3 cm^{-1} . For the SnS part $R_F = 0.088$ for 306 unique reflections; for the NbS₂ part $R_F = 0.031$ for 329 unique reflections (for both cases 0kl reflections excluded). The relative position of these two lattices was determined from the common reflections 0kl: $R_F = 0.072$ for 98 reflections. The SnS part of the structure consists of deformed slices of SnS with a thickness of half the cell edge of (hypothetical) NaCltype SnS. Each Sn atom is in this way coordinated by five sulfur atoms; four sulfur atoms are in a plane perpendicular to the c axis with SnS distances 2.74(1) $(1\times)$, 2.913 (1) (2×) and 3.01 (1) Å (1×), whereas the fifth Sn-S bond with length 2.695 (9) Å is approximately along the c axis. The NbS₂ part of the structure is that of NbS_2-2H with Nb in trigonal prisms of sulfur; the Nb-S distances are 2.473 (1) Å. From refinement of the common 0kl reflections the relative y and z positions of the two sublattices were found; along the common a direction the lattices of SnS and NbS₂ are incommensurate.

Introduction

Compounds of assumed composition MTX_3 (M =Sn, Pb; T = Ti, V, Nb, Ta; X = S, Se) have been known for a considerable time (Schmidt, 1970; Sterzel & Horn, 1970; van Maaren, 1972; Donohue, 1975). The crystals obtained by syntheses from the elements have an appearance suggesting a layered structure but owing to very easy plastic deformation it has so far not been possible to determine the structure. X-ray powder diffraction revealed teteragonal or pseudotetragonal unit cells with $a \simeq 4$, $c \simeq 12$ Å. We succeeded in growing single crystals by vapor transport using chlorine as transport agent. In this paper the determination of the misfit layer structure of 'SnNbS₃' is described; the composition of the compound turned out to be $(SnS)_{1.17}NbS_2$; it will be designated for brevity as 'SnNbS₃'.

Experimental

'SnNbS₃' could be grown as thin platelets with diameters up to about 5 mm. The black crystals are mechanically very soft and have a brilliant luster. The starting material was SnNbS₃ obtained by syntheses from the elements at 1123 K and the temperature gradient was 1113-1043 K; transport was to the low-temperature side of the quartz tube.

Structure determination

Single-crystal X-ray diffraction with an Enraf-Nonius CAD-4F diffractometer using monochromatized Mo

© 1989 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

Table 1. Crystal data and details of the structure determination

(a) SnS part		$\omega/2\theta$ scan (°)	$\Delta \omega = 1.00 + 0.35 \tan \theta$
Crystal data		Data set	$h: -6 \rightarrow 6; k: 0 \rightarrow 10; l: -21 \rightarrow 21$
Crystal data		Crystal-to-receiving aperture	
Space group, no.	C2mb, 39	distance (mm)	1/3
a(Å)	5.673 (1)	Horizontal, vertical aperture (mm)	4.0, 4.5
$b(\mathbf{A})$	5.750(1)	Reference reflections r.m.s. dev. (%)	021, 0.55
$c(\mathbf{A})$	11.760(1)		023, 0.65
$V(Å^3)$	383.6(1)		008, 0.62
Z	4	Drift correction	0.991-1.000
F(000) electrons	264	Min. and max. absorption correction	
Approx, crystal dimensions (mm)	$0.18 \times 0.11 \times 0.003$	tactors	1.06-2.48
Approx. crystar annonsions (mm)		X-ray exposure time (h)	18-4
Data collection		Total data	1464
	Errof Norius CAD 4E	Unique data	429
Diffractometer	Enral-Nonius CAD-4F	Observed data $[I \ge 2.5 \sigma(I)]$	427
Radiation (A)	Μο Κα, 0./10/3	$R1[=\sum(I-I)/\sum I]$	0.041
Monochromator	Graphite	$R2 \ (= \sum \sigma / \sum I)$	0.034
Temperature (K)	298	Number of equivalent reflections	1458
θ range; min. max. (°)	1.73, 34.99		
$\omega/2\theta$ scan (°)	$\Delta \omega = 0.80 + 0.35 \tan \theta$	Refinement	
Data set	$h: -9 \rightarrow 9; \ k: \ 0 \rightarrow 9; \ l: -18 \rightarrow 18$	Number of reflections $h \neq 0$	320
Crystal-to-receiving-aperture		Number of refined perometers	10
distance (mm)	173	Final and the former former	10
Horizontal, vertical aperture (mm)	4.0, 4.5	Final agreement factors;	0.021
Reference reflections, r.m.s. dev. (%)	021, 0·53	$K_F = \sum_{i=1}^{n} (F_o - F_c) / \sum_{i=1}^{n} F_o $	0.031
, , ,	233, 0.41	$wR = [\sum w(F_o - F_c)^{-} / \sum w F_o ^{-}]^{-}$	0.036
	008. 0.46	Weighting scheme	1
Drift correction	0.996-1.000	$S = \left[\sum w(F_o - F_c)^2 / (m - n)\right]^{1/2}$	1.079
Min and max absorption correction	0 //0 1 000	m = number of observations	
forters	1.06 2.08	n = number of variables	
Tactors	20.2	Residual electron density in final	
X-ray exposure time (ii)	1979	difference Fourier map (e Å ⁻³)	-1.52, 3.29
	1020	Max. (shift/ σ) final cycle	0.224
Unique data	498	Average (shift/ σ) final cycle	0-031
Observed data $[1 \ge 2.5 \sigma(1)]$	430		
$R_{1}[=\sum_{i}(I-1)/\sum_{i}I]$	0.035	(c) Projection down [100]	
$R^2 (= \sum \sigma / \sum I)$	0:035		
Number of equivalent reflections	1824	Crystal data	
Refinement		Chemical formula	$(SnS) = (NbS_{2})$
Keimement		Mol. wt	334.02
Number of reflections $h \neq 0$ and $h \neq 5$	306	Space group no	P11m 6
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters	306 12	Space group, no.	P11m, 6 3.321 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors;	306 12	Space group, no. $a(\hat{A})$	P11m, 6 3·321 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $	306 12 0·088	Space group, no. $a(\hat{A})$ $b(\hat{A})$ $a(\hat{A})$	P11m, 6 $3 \cdot 321 (1)$ $2 \cdot 876 (1)$ $11 \cdot 756 (1)$
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$	306 12 0.088 0.085	Space group, no. $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $V(\hat{A}^3)$	33-342 P11m, 6 3·321 (1) 2·876 (1) 11·760 (1) 12.4 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (\ F_o - F_c\) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme	306 12 0·088 0·085 1	Space group, no. a (\hat{A}) b (\hat{A}) c (\hat{A}) V (\hat{A}^3)	33-321 (1) 2.876 (1) 11.760 (1) 112.4 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$	306 12 0.088 0.085 1 3.762	Space group, no. a $(Å)$ b $(Å)$ c $(Å)$ V $(Å^3)$ Z D $(a cm^{-3})$	33-321 (1) 2.876 (1) 11.760 (1) 112.4 (1) 1 4.051
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations	306 12 0.088 0.085 1 3.762	Space group, no. $a(\mathring{A})$ $b(\mathring{A})$ $c(\mathring{A})$ $V(\mathring{A}^3)$ Z $D_x(g cm^{-3})$ E(000)	33-321 (1) 2-876 (1) 1-1760 (1) 112-4 (1) 1 4-951 160.0 0
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations n = number of variables	306 12 0.088 0.085 1 3.762	Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons $(M + C^{-1})$	33-321 (1) 2-876 (1) 11-760 (1) 112-4 (1) 1 4-951 150-9 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m-n)]^{1/2}$ m = number of observations n = number of variables Min, and max, residual densities in final	306 12 0-088 0-085 1 3-762	Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo $K\bar{\alpha}$) (cm ⁻¹)	33-321 (1) 2-876 (1) 11-760 (1) 112-4 (1) 1 4-951 150-9 102-3 02-3 02-4
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{\frac{1}{h} - 3}$)	306 12 0.088 0.085 1 3.762	Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo $K\bar{\alpha}$) (cm ⁻¹) Aprox. crystal dimensions (mm)	33-321 (1) 2.876 (1) 1.760 (1) 11.760 (1) 12.4 (1) 1 4.951 150.9 102.3 0.18 × 0.11 × 0.003 1
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m-n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/c) final cycle	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120	Note: we we have the second s	33-321 (1) 2-876 (1) 1-760 (1) 112-4 (1) 1 4-951 150-9 102-3 0-18×0-11×0-003 0-03
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{\hat{A}^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle	306 12 0.088 0.085 1 3.762 −3.38, 2.86 0.120 0.059	Note: we show that the second	33-321 (1) 2-876 (1) 2-876 (1) 11-760 (1) 112-4 (1) 1 4-951 150-9 102-3 0-18 × 0-11 × 0-003
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059	Not. we Space group, no. $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $V(\hat{A}^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part:	33-321 (1) 2-876 (1) 11-760 (1) 11-760 (1) 11-760 (1) 11-760 (1) 11-760 (1) 11-760 (1) 12-3 (1) 0-18 × 0-11 × 0-003 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059	Not. we Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{\alpha})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $/1.0 \ 0.0 \ 0.0$	33-92 P11m, 6 3·321 (1) 2·876 (1) 11·760 (1) 112·4 (1) 1 4·951 150·9 102·3 0·18 × 0·11 × 0·003
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)/2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m-n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle (b) NbS ₂ part Counted date	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059	Not. we Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a}) (cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \end{pmatrix}$	33-92 P11m, 6 3·321 (1) 2·876 (1) 11/760 (1) 112·4 (1) 1 4·951 150·9 102·3 0·18×0·11×0·003
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data	306 12 0.088 0.085 1 3.762 −3.38, 2.86 0.120 0.059	Not. we Space group, no. a(Å) b(Å) c(Å) $v(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 \\ 0 & 0 \cdot 5 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 1 \cdot 0 \end{pmatrix}$	33-321 (1) 2-876 (1) 2-876 (1) 11-760 (1) 112-4 (1) 1 4-951 150-9 102-3 0-18 × 0-11 × 0-003
Number of reflections $h \neq 0$ and $h \neq 5$ Number of reflect parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{\frac{1}{A} - 3}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no.	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 <i>Cm2m</i> , 38	Not. we Space group, no. a (Å) b (Å) c (Å) v (Å) Z D_x (g cm ⁻³) F(000), electrons μ (Mo K \overline{a}) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1 \cdot 0 \ 0 \$	33-321 (1) 2-876 (1) 1-760 (1) 11-760 (1) 11-760 (1) 11-760 (1) 11-760 (1) 11-760 (1) 12-3 (1) 0-18 × 0-11 × 0-003 (1)
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A)	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1)	Note we have a state of the second state of t	33-321 (1) 2-876 (1) 11-760 (1) 112-4 (1) 1 4-951 150-9 102-3 0-18 × 0-11 × 0-003
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a (Å) b (Å)	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1)	Not. we Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a}) (cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$	98
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1)	Not. we Space group, no. a(Å) b(Å) c(Å) $v(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{\alpha})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 0 & 1 \cdot 0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$	98 8 98 8
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m-n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{\hat{A}^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $V(\hat{A}^3)$	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1)	Not. we Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo $K\bar{a}$) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 5 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 1 & 0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of reflections: c	98 8 98 8 8
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) c(A) $V(A^3)$ Z	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2	Not. We Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{\alpha})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of refined parameters Final agreement factors: $P_x = SU(E = [L_x] N(E = [L_x])$	98 98 98 90 90 90 90 90 90 90 90 90 90
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a (Å) b (Å) c (Å) y (Å ³) Z F(000) electrons	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146	Not. we Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a}) (cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ h = 0 h =	98 98 90 90 90 98 98 90 97 98 98 98 98 98 98 98 98 98 98
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a (Å) b (Å) c (Å) $V (Å^3)$ Z F(000), electrons Approx. Crystal dimensions (mm)	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18 × 0.11 × 0.003	Not. we Space group, no. a(Å) b(Å) c(Å) $v(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{\alpha})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1\cdot 0 & 0\cdot 0 & 0\cdot 0\\ 0\cdot 0 & 0\cdot 0 & 1\cdot 0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of refined parameters Final agreement factors: $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)/\sum w F_o ^2]^{1/2}$	98 8 90-072 0-075
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) $V(A^3)$ Z F(000), electrons Approx. crystal dimensions (mm)	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18×0.11×0.003	Not. we Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo $K\bar{a}$) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 5 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 0 & 1 \cdot 0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of reflections: $R_F = \sum (F_o - F_c)/\sum F_o $ $w_R = [\sum w(F_o - F_c)/\sum w F_o ^2]^{1/2}$ Weighting scheme	98 98 90-072 0-075 1 93-321 0-18 × 0-11 × 0-003
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) c(A) Z F(000), electrons Approx. crystal dimensions (mm) Data collection	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18 × 0.11 × 0.003	Not. We Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{\alpha})(cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $R_F = \sum(F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)/\sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$	98 8 90-072 0-075 11-959
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) c(A) $V(A^3)$ Z F(000), electrons Approx. crystal dimensions (mm) Data collection	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18 × 0.11 × 0.003	Not. we Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a}) (cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations	98 98 90 90 98 98 98 98 98 98 98 98 98 98
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)/\sum W_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a (Å) b (Å) c (Å) $V (Å^3)$ Z F(000), electrons Approx. crystal dimensions (mm) Data collection Diffractometer	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18 × 0.11 × 0.003 Enraf-Nonius CAD-4F	Not. we Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo Kā) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of refined parameters Final agreement factors: $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)/\sum V_o F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations $n = number of variables$	98 98 9 90-072 0-075 1 93-321 0-172 0-172 0-175 1 1-175 0-175 1 1-959
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum W F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) $V(A^3)$ Z F(000), electrons Approx. crystal dimensions (mm) Data collection Diffractometer Radiation (\hat{A})	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18 × 0.11 × 0.003 Enraf-Nonius CAD-4F Mo Kā, 0.71073	Not. we Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo K $\bar{\alpha}$) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1 \cdot 0 & 0 \cdot 0 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 5 & 0 \cdot 0 \\ 0 \cdot 0 & 0 \cdot 0 & 1 \cdot 0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $h = 0$ Number of reflections: $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c)^2 / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of variables Min. and max. residual densities in final	98 8 90-072 0-075 1 1-959
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle Average (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) c(A) $V(A^3)$ Z F(000), electrons Approx. crystal dimensions (mm) Data collection Diffractometer Radiation (A) Monochromator	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 0.18 × 0.11 × 0.003 Enraf-Nonius CAD-4F Mo Kā, 0.71073 Graphite	Not. We Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D _x (g cm ⁻³) F(000), electrons μ (Mo K $\ddot{\alpha}$) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $R_F = \sum (F_o - F_c)^2 F_o $ $wR = [\sum w(F_o - F_c)^2 / w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map (e Å ⁻³)	98 98 9 91-1
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c) / \sum F_o $ $wR = [\sum w(F_o - F_c) / \sum w F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) c(A) $V(A^3)$ Z F(000), electrons Approx. crystal dimensions (mm) Data collection Diffractometer Radiation (Å) Monochromator Temperature (K)	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 $0.18 \times 0.11 \times 0.003$ Enraf-Nonius CAD-4F Mo K $\bar{\alpha}, 0.71073$ Graphite 298	Not. We Space group, no. a(Å) b(Å) c(Å) $V(Å^3)$ Z $D_x(g cm^{-3})$ F(000), electrons $\mu(Mo K\bar{a}) (cm^{-1})$ Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 1.0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $R_F = \sum (F_o - F_c) \sum F_o $ $wR = [\sum w(F_o - F_c)^2 Xw F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2 / (m - n)]^{1/2}$ m = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e Å^{-3}$) Max. (shift/ σ) final cycle	98 98 98 90.072 $-1.32, 1.15$ $1.50.9$ $1.12.4 (1)$ $1.12.4 ($
Number of reflections $h \neq 0$ and $h \neq 5$ Number of refined parameters Final agreement factors; $R_F = \sum (F_o - F_c)/\sum F_o $ $wR = [\sum w(F_o - F_c)/\sum W_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations n = number of observations n = number of variables Min. and max. residual densities in final difference Fourier map ($e^{A^{-3}}$) Max. (shift/ σ) final cycle (b) NbS ₂ part Crystal data Space group, no. a(A) b(A) c(A) $v(A^3)$ Z F(000), electrons Approx. crystal dimensions (mm) Data collection Diffractometer Radiation (A) Monochromator Temperature (K) θ range; min. max. (°)	306 12 0.088 0.085 1 3.762 -3.38, 2.86 0.120 0.059 Cm2m, 38 3.321 (1) 5.752 (1) 11.763 (1) 224.7 (1) 2 146 $0.18 \times 0.11 \times 0.003$ Enraf-Nonius CAD-4F Mo $K\bar{\alpha}, 0.71073$ Graphite 298 1.73, 39.99	Not. We Space group, no. a (Å) b (Å) c (Å) V (Å ³) Z D_x (g cm ⁻³) F(000), electrons μ (Mo Kā) (cm ⁻¹) Aprox. crystal dimensions (mm) Data collection Diffraction data from the NbS ₂ part: transformation matrix: $\begin{pmatrix} 1\cdot 0 & 0\cdot 0 & 0\cdot 0\\ 0\cdot 0 & 0\cdot 5 & 0\cdot 0\\ 0\cdot 0 & 0\cdot 0 & 1\cdot 0 \end{pmatrix}$ Refinement Number of reflections: $h = 0$ Number of reflections: $R_F = \sum (F_o - F_c)/\sum F_o $ w $R = [\sum w(F_o - F_c)/\sum V_o F_o ^2]^{1/2}$ Weighting scheme $S = [\sum w(F_o - F_c)^2/(m - n)]^{1/2}$ m = number of observations $n = number of variables Min. and max. residual densities in final difference Fourier map (eÅ-3) Max. (shift/\sigma) final cycle$	98 98 8 0.072 $-1.32, 1.15$ 1.6×10^{-4} 4.0×10^{-5}

 $K\bar{\alpha}$ radiation of a crystal of approximate dimensions $0.18 \times 0.11 \times 0.003$ mm revealed that the reflections can be indexed using two *C*-centered orthorhombic unit cells with cell constants as given in Table 1. These two lattices have the b and c axes in common while the lattices do not match along the a axes, the ratio of their lengths being $5 \cdot 673/3 \cdot 321 = 1 \cdot 708$. Because this ratio is irrational, it is not possible to choose a

Table 2. Final fractional atomic coordinates and equivalent isotropic thermal parameters, with their e.s.d.'s in parentheses

SnS					(SnS) ₁₋₁₇ NbS ₂ (projection down [100])					
Sn(1) S(1)	Site 4(c) 4(c)	x 0·00000 0·476 (2)	y 0·25000 0·25000	z 0·1335 (2) 0·0954 (7)	Sn(1) S(21)	Site 2(c) 2(c)	x 	y 0·499 (3) 0·499 (3)	z 0·1327 (5) 0·0948 (5)	s.o.f. 0∙594 0∙594
NbS ₂ Nb(1) S(2)	2(<i>a</i>) 4(<i>c</i>)	0.00000 0.00000	0·00000 0·3335 (3)	0·00000 0·1328 (1)	Nb(1) S(11)	1(b) 2(c)	_	0·330 0·000	0·5000 0·6327	1∙00 1∙00
Anisotropio	thermal	parameters	(Ų)							
	U_{11}		U_{22}	U_{33}	U_{23}		ι	J ₁₃	U_{12}	
Sn(1) S(1) Nb(1) S(2)	0-04 0-02 0-01 0-01	0 (1) 2 (5) 04 (2) 24 (5)	0·0362 (9) 0·040 (4) 0·0036 (2) 0·0054 (5)	0·0245 (7) 0·029 (3) 0·0095 (2) 0·0104 (5)	0.00000 0.00000 0.00000 0.00000		0 -0 0 0	·000 (2) ·006 (4) ·00000 ·00000	0.00000 0.00000 0.00000 0.00000	
			F	$(\mathbf{h}) = F_o(\mathbf{h}) \exp\left(-2\pi^2\right)$	$\sum_{i=1}^{3} \sum_{j=1}^{3} h_{i}h_{j}a_{i}^{*}a_{j}^{*}$	U_{ij}).				

larger unit cell which describes the complete structure. The c axes are perpendicular to the crystal platelet. It was quickly deduced that these lattices belong to different structural units, viz the almost square mesh in the *ab* plane to SnS and the other to NbS₂; the mesh in the C-centered cell with a = 3.321, b = 5.752 Å agrees almost perfectly with the orthohexagonal cell dimensions $(a \times a\sqrt{3} = 3.324 \times a\sqrt{3})$ 5.757 Å) of NbS₂-2H, space group P6₃/mmc (Fisher & Sienko, 1980). The structure determination was therefore split into three different parts, viz the structure determination of the SnS and NbS₂ parts separately, during which the common 0kl reflections were omitted because their intensities are determined by both lattices together, followed by determination of the relative y and z position of both structure parts in the complete structure, using the common 0klreflections.

'SnS' part

Unit-cell dimensions and their standard deviations were determined from the setting angles of 16 reflections in the range $13.97 < \theta < 19.62^{\circ}$ in four alternate settings (de Boer & Duisenberg, 1984). All reflections were measured in one hemisphere up to $\theta = 35^{\circ}$. The three reference reflections measured every 2 h showed a long-term variation of less than 1% during the 20.3 h of X-ray exposure time. A $360^{\circ} \psi$ scan for reflection 040 showed an intensity variation up to 20% about the mean value. The net intensities of the data were corrected for the scale variation, Lorentz and polarization effects and for absorption using a Gaussian integration method (Spek, 1983) (grid: $10 \times 10 \times 10$; corrections in the range 1.06 to 2.08). Standard deviations in the intensities based on counting statistics were increased according to an analysis of the excess variance of the three reference reflections: $\sigma^2(I) =$ $\sigma_{cs}^2(I) + (PI)^2$ where P (=0.0047) is the instability constant (McCandlish, Stout & Andrews, 1975). Averaging equivalent reflections resulted in 430 unique reflection data with $I \ge 2.5 \sigma(I)$. The Ccentered orthorhombic unit cell was checked for the presence of higher lattice symmetry (Le Page, 1982). The space groups possible from the systematic extinctions (*hkl*: h + k = 2n + 1; *hk*0: *h*, k = 2n + 1) are C2mb, Cm2a, Cmma and Cmmb. The structure was solved by Patterson methods (SHELXS86; Sheldrick, 1986). In space groups Cmma and Cmmb the Sn and S atoms are on the special positions 4(g): 0, 1/4, z, $z \approx 0.13$ for Sn and $z \approx -0.10$ for S, with site symmetry mm. In space groups C2mb and Cm2a the atoms are on site 4(c); x, 1/4, z for C2mb and 1/4, y, z for Cm2a. As a choice of the origin x and y of Sn can be chosen respectively equal to zero. From the Patterson synthesis it follows that x or y of S is close to 1/2. Therefore the deviation from centrosymmetry is very small and the true space group will be difficult to find. Refinements were performed in space groups Cmma, C2mb, and Cm2a. The lowest R factor was found for C2mb with coordinates given in Table 2. It was observed during the refinement that F_o of a number of reflections with h = 5 was systematically larger than F_c ; this is possibly due to the nearby reflections 3kl of the strong reflecting NbS₂ lattice. Reflections with h = 5 (as well as those with h = 0) of the SnS lattice were therefore omitted. Refinement on F in space group C2mb with Sn and S at sites 4(c), by full-matrix least squares with 306 unique reflections with $I \ge 2.5 \sigma(I)$, converged at $R_F =$ 0.088, wR = 0.085, S = 3.762; the weighting scheme was w = 1: cell data, details of data collection and refinement are given in Table 1, coordinates are given in Table 2. The polarity of the structure was tested by refinement with if'' and -if'' values, respectively, giving also only marginally different R values, probably due to twinning in this respect. A final difference Fourier map showed a peak of $10.5 \text{ e} \text{ Å}^{-3}$ located at 0.8 Å from the Sn site.

288

'NbS₂' part

Unit-cell dimensions and their standard deviations were determined from the setting angles of 20 reflections in the range $24.98 < \theta < 25.97^{\circ}$ in four alternate settings (de Boer & Duisenberg, 1984). All reflections were measured in one hemisphere up to $\theta = 40^{\circ}$. The three reference reflections measured every 2 h showed a long-term variation of less than 1% during the 18.4 h of X-ray exposure time. The net intensities of the data were corrected for the scale variation, Lorentz and polarization effects and for absorption (Spek, 1983) (corrections in the range 1.06 to 2.485). Standard deviations in the intensities based on counting statistics were increased according to an analysis of the excess variance of the three reference reflections. The C-centered orthorhombic unit cell was checked for the presence of higher lattice symmetry (Le Page, 1982). Space group Cm2m was determined from the systematic extinctions (*hkl*: h + k = 2n + 1) and discriminated from C222, C2mm and Cmm2 during the structure determination process. The structure was solved by Patterson methods (SHELXS86; Sheldrick, 1986). Refinements by full-matrix least squares performed in space group Cm2m with Nb at 000 and 1/2, 1/2, 0 and sulfur at 4(d) using 329 unique reflections converged at $R_F = 0.031$, wR = 0.036, S =1.079, unit weights were applied. A final difference Fourier map did not show significant residual features. Cell data, data collection and refinement details are given in Table 1.

'The complete structure'

From the size of the unit cells in the *ab* plane and the number of formula units SnS and NbS₂ per cell one finds that the composition of the compound is $(SnS)_{1.17}NbS_2$ (1.17 = 2/1.708; the factor 2 arises because the number of SnS units per cell is twice the number of NbS₂ units per cell). The composition of the compound is therefore determined by the relative size of the unit meshes in the *ab* plane of the two structural units.

The y and z coordinates of all atoms in the complete structure were found from the Patterson function calculated using the common reflections of both lattices, viz the 0kl reflections. The symmetry element in the structure projected along [100] is a mirror plane perpendicular to the c axis. Since the 0kl reflections are only present for k = 2n, a smaller unit cell can be chosen for the refinement, viz the unit cell with b' =(1/2)b, c' = c; this unit cell contains one NbS₂ and $2 \times (1/1.708) = 1.17$ SnS units. The two-dimensional space groups (International Tables for Crystallography, 1983)]. Niobium of the NbS₂ sandwich was placed at the mirror plane at z' = 1/2; from the refinement of the NbS₂ lattice one finds for the z' coordinates of the two sulfurs of the NbS₂ unit z' = $1/2 \pm 0.1327$. The y' coordinate of sulfur was fixed at y'=0; using the y coordinates of the atoms in the NbS₂ lattice, one finds y' of niobium equal to 0.3330. From the Patterson projection the y' coordinates of Sn and S of the SnS unit were found, the z' coordinates being equal to the z coordinates of the atoms in the sublattice of SnS. For the refinement we choose the monoclinic space group P11m, Nb(1) being at 1(b), S(11), Sn(1) and S(21) at sites 2(c). The full-matrix least-squares refinement (on F) using 98 reflections with $I \ge 2.5 \sigma(I)$ and isotropic thermal parameters was carried out with the S(21) atom in the riding mode on the Sn(1) atom. The coordinates of Nb(1)and S(11) of NbS₂ were kept fixed. Parameters in the refinement were the y and z coordinates of Sn(1), the site occupancy factor of Sn(1) [s.o.f. of S(21) kept equal to the s.o.f. of Sn(1) and the isotropic thermal parameters of all atoms. It may be noted that it is useless to relate the x coordinates in the complete structure because of the incommensurate character of the structure along the *a* axes. The composition of the compound obtained from the occupancy of the Sn(1) and S(21) sites is $(SnS)_{1,17}NbS_2$, in very good agreement with the composition calculated from the ratio of the lengths of the *a* axes of the two structural units.

Crystal data and experimental details of this part of the structure determination are compiled in Table 1. Final fractional atomic coordinates and anisotropic thermal parameters and s.o.f.'s are given in Table 2.*

In all our calculations scattering factors were taken from Cromer & Mann (1968). Anomalous-dispersion factors are those given by Cromer & Liberman (1970). All calculations are carried out on the CDC-Cyber 170/760 computer of the University of Groningen with the program packages *XTAL* (Hall & Stewart, 1987) and *EUCLID* (Spek, 1982; calculation of geometric data).

Discussion of the structure

 $(SnS)_{1.17}NbS_2$, 'SnNbS₃', has, according to our structure determination, an incommensurate misfit layer structure with alternately two-atom-thick layers of SnS (centered on z = 0, Fig. 1) and three-atom-thick sandwiches of NbS₂ centered on z = 1/2 (Fig. 2). Each Sn atom is coordinated to five sulfur atoms of the SnS layers; four S atoms are in a plane perpendicular to the c axis with Sn–S distances of 2.74 (1) (1×), 2.913 (1) (2×), and 3.01 (1) Å (1×). The Sn–S bond

^{*} Lists of structure factors, anisotropic thermal parameters and bond lengths have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51411 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

of length 2.695 (9) Å makes an angle of 87.1° with this plane. In this way two-atom-thick layers of SnS are formed, looking like layers made of NaCl-type SnS by cutting slices with a thickness one half of the cubic cell edge. It must be noted that the crystal structure of α -SnS (the low-temperature form) is a much more deformed version of the NaCl-type structure, with each Sn having three pyramidal S neighbors, one at 2.627 Å and two at 2.665 Å; three other sulfur atoms are at rather larger distances [3.290 (2×), 3.388 Å (1×)] (Wiedemeier & von Schnering, 1978). The β -SnS structure (von Schnering & Wiedemeier, 1981) (the high-temperature form) with TII structure contains double layers of SnS with four equal Sn-S bonds of 2.96 Å with bond order 0.5

Fig. 1. The SnS part of the structure projected along [001] (left) and [010] (right). Large and small circles are sulfur and tin respectively.

approximately in the *ab* plane and a fifth Sn–S bond along the *c* axis of 2.63 Å with bond order 1. The SnS slices in $(SnS)_{1.17}NbS$ are intermediate between those of α - and β -SnS. Niobium atoms of the NbS₂ part of the structure are in trigonal-prismatic coordination by sulfur with Nb–S 2.474 (2) Å; this distance is close to those found in the intercalates Cu_{0.5}NbS₂ (2.482 Å) (Paulus, Meetsma, de Boer & Wiegers, 1989) and Ag_{0.6}NbS₂ (2.480 Å) (van der Lee, Bouwmeester & Wiegers, 1989). The Nb–S distance in NbS₂-2*H* is not known accurately because no accurate structure determination has been performed so far.

It is seen that 'long' and 'short' Sn-S bonds alternate along the *a* axis. It may be remarked that in space group Cm2a, 'long' and 'short' bonds alternate along the *b* axis, while in Cmma the Sn-S bonds do not alternate in length. In a recent study of the application of superspace-group symmetry on composite crystals, van Smaalen (1989) deduced that the space group of the SnS part must be Cm2a in order to fit with the space group Cm2m of the NbS₂ lattice. The observation that in C2mb a slightly lower R_F was obtained was explained by the effect of the modulation. Not including the modulation is probably also the cause of the rather high R_F of the SnS part.

An interesting feature of the structure is the relative position of the SnS and the NbS₂ parts (Figs 3 and 4). Is is seen that Sn lies exactly between rows of sulfur of NbS₂ running parallel to the *a* axis, at y = 0and y = 1/2 (Table 2). In this way the coordination of Sn (at y = 1/4 and y = 3/4) by S of NbS₂ varies between two and three. Some Sn atoms fit in the hole formed by three S of NbS₂, while other Sn atoms show a coordination of one relatively short Sn-S

Fig. 2. The NbS₂ part of the structure projected along [001] (left) and [010] (right). Large and small circles are sulfur and niobium respectively. The NbS₂ sandwich is centered on z = 1/2.

Fig. 3. The complete structure projected along the misfit axes [100].

distance and two relatively long Sn–S distances. The observed coordination variation is a consequence of the incommensurate character of the structure. A second interesting feature is the distortion of the lattices of NbS₂ and SnS compared with an ideal hexagonal and tetragonal lattice, respectively. It is seen that for NbS₂ no distortion occurs: for an ideal hexagonal mesh the ratio $b/a = \sqrt{3} = 1.732$, to compare with 1.732 experimentally. For SnS, the deviation from a quadratic mesh in the *ab* plane, b/a = 1.014, corresponds to an elongation along the *b* axis.

One expects, besides the observed diffraction pattern, reflections due to the mutual modulation of one sublattice by the other. These reflections have been observed by electron diffraction (Kuyper, van Tendeloo, van Landuyt, Amelinckx, Wiegers & Meetsma, 1988). Such a mutual modulation implies that the refined structures of SnS and NbS₂ are average structures, the modulation becoming apparent as an enhanced temperature motion of the atoms. The observed high temperature factors of the atoms of the SnS part, compared with those of the NbS₂ part, may indicate that the SnS lattice is more susceptible to modulation by NbS_2 than NbS_2 by SnS; this is supported by the observation that the SnS lattice is distorted but the NbS₂ lattice is not. In electron diffraction the strongest satellites are due to the modulation of SnS by NbS₂. The electrical transport and magnetic properties of $(SnS)_{1,17}NbS_2$ (Wiegers, Meetsma, Haange & de Boer, 1988) strongly resemble those of NbS₂-2H and intercalates of NbS₂-2H with electron-donating species (e.g. Cu, Ag; donor molecules like NH₃); it indicates that the stability of $(SnS)_{1:17}NbS_2$ is due to the same type of interaction, viz donation of electrons, or overlap with lone-pair electrons as occurs in the intercalates.

It is interesting to note that in the powder pattern of 'SnNbS₃' only the SnS part of the structure is observed; the *a* axis of the tetragonal unit cell reported by van Maaren (1972), a = 4.05, c = 11.77 Å, is half of the diagonal in the *ab* plane of the *C*-centered cell of the SnS part of the structure (Table 1); owing to the small deviation from 90° of the angle between *a* and *b*, the primitive cell is monoclinic with a =4.039, b = 4.039 Å, $\gamma = 90.78^\circ$. The only structure

Fig. 4. The complete structure {five units with a (SnS) projected along [001]} showing the incommensurate character. Tin atoms above and below NbS₂ sandwiches are indicated by thick and thin hatched circles, respectively; small and large open circles are niobium and sulfur respectively. Sulfur atoms of the SnS part are omitted for the sake of clarity.

determination of a misfit layer compound containing a transition-metal dichalcogenide as structural unit reported so far in the literature is $(LaS)_{1\cdot20}CrS_2$, 'LaCrS₃', with two-atom-thick layers of LaS and sandwiches of CrS₂ with Cd(OH)₂-type structure, the sublattices being monoclinic (Kato, Kawada & Takahashi, 1977; Otero-Diaz, Fitzgerald, Williams & Hyde, 1985). The ratio of the lengths of the axes along the misfit direction is equal to 5/3 and the complete structure can be described in a larger unit cell; moreover, the periodicity along the *c* axis of the CrS₂ part is six times that of the LaS lattice.

We have found a structure similar to that of $SnNbS_3$, for $PbNbS_3$, also with C-centered orthorhombic lattices of PbS and NbS₂; the length of the c axis of the NbS₂ lattice here being twice that of the PbS lattice. In $PbTaS_3$, we found F-centered orthorhombic lattices of PbS and TaS₂. Along the c axes of length 24.0 Å four structural units of PbS and TaS₂ alternate; units of the same type $\frac{1}{2}c$ apart are displaced with respect to each other over $\frac{1}{2}b$. Structure determinations and physical properties will be published in due course.

The analogy in the unit cells from powder diffraction of a number of compounds 'Pb MX_3 ' and $SnMX_3$ (M = Ti, V, Nb, Ta) (Schmidt, 1970; Sterzel & Horn, 1970; van Maaren, 1972; Donohue, 1975) reveals that the structures are strongly related to, or even isostructural with, 'SnNbS₃'. Similarly one may expect from the unit-cell dimensions that the compounds 'Ln MX_3 ' (Ln the rare earth metals, M = Ti, V, Nb, Ta; X = S, Se), first described by Donohue (1975), are of a related structure type, with probably a monoclinic mesh in the *ab* plane. The compounds 'Ln MS_3 ' (M = V, Cr) reported by Murugesan, Ramesh, Gopalakrishnan & Rao (1981) are probably structurally related to 'LaCrS₃'. A recent review of misfit layer structures including 'LaCrS₃' has been given by Makovicky & Hyde (1981).

References

- BOER, J. L. DE & DUISENBERG, A. J. M. (1984). Acta Cryst. A40, C410.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324. DONOHUE, P. C. (1975). J. Solid State Chem. 12, 80-83.
- FISHER, W. G. & SIENKO, M. J. (1980). Inorg. Chem. 19, 39-43.
- HALL, S. R. & STEWART, J. M. (1987). Editors. XTAL2.2 User's Manual. Univ. of Western Australia, Australia, and Maryland, USA.
- International Tables for Crystallography. (1983). Vol. A. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KATO, K., KAWADA, I. & TAKAHASHI, T. (1977). Acta Cryst. B33, 3437-3443.
- KUYPER, S., VAN TENDELOO, G., VAN LANDUYT, J., AMELINCKX, S., WIEGERS, G. A. & MEETSMA, A. (1988). Proc. Electron Microscop. Conf., York, England.

LEE, A. VAN DER, BOUWMEESTER, H. & WIEGERS, G. A. (1989). In preparation.

LE PAGE, Y. (1982). J. Appl. Cryst. 15, 255-259.

- MAAREN, M. H. VAN (1972). Phys. Lett. 40, 353-354.
- MCCANDLISH, L. E., STOUT, G. H. & ANDREWS, L. C. (1975). Acta Cryst. A31, 245-249.
- MAKOVICKY, E. & HYDE, B. G. (1981). Struct. Bonding (Berlin), 46, 101-170.
- MURUGESAN, T., RAMESH, S., GOPALAKRISHNAN, J. & RAO, C. N. R. (1981). J. Solid State Chem. 38, 165-172.
- OTERO-DIAZ, L., FITZGERALD, J. D., WILLIAMS, T. B. & HYDE, B. G. (1985). Acta Cryst. B41, 405-410.
- PAULUS, W., MEETSMA, A., BOER, J. L. DE & WIEGERS, G. A. (1989). In preparation.
- SCHMIDT, L. (1970). Phys. Lett. 31A, 551-552.

- SCHNERING, H. G. VON & WIEDEMEIER, H. (1981). Z. Kristallogr. 156, 143-150.
- SHELDRICK, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany. SMAALEN, S. VAN (1989). J. Phys. C. Submitted.
- SPEK, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. SAYRE, p. 528. Oxford: Clarendon Press.
- SPEK, A. L. (1983). Proc. 8th Eur. Crystallogr. Meet., Belgium.
- STERZEL, W. & HORN, J. (1970). Z. Anorg. Allg. Chem. 376, 254-260.
- WIEDEMEIER, H. & VON SCHNERING, H. G. (1978). Z. Kristallogr. 148, 295-303.
- WIEGERS, G. A., MEETSMA, A., HAANGE, R. & BOER, J. L. DE (1988). Mater. Res. Bull. 23, 1551-1559.

Acta Cryst. (1989). A45, 291-296

The Incommensurate Misfit Layer Structure of (SnS)_{1.17}NbS₂, 'SnNbS₃'. II. A Study by Means of Electron Microscopy

By S. Kuypers,* G. Van Tendeloo, J. Van Landuyt and S. Amelinckx

University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

(Received 12 July 1988; accepted 25 October 1988)

Abstract

Electron diffraction and high-resolution imaging are used to study the remarkable incommensurable misfit layer compound (SnS)_{1·17}NbS₂, 'SnNbS₃'. Electron diffraction patterns along the zone axis perpendicular to the layer planes are analysed in detail based on the mixed-layer assumption proposed in paper I [Meetsma, Wiegers, Haange & de Boer (1989). Acta Cryst. A45, 285-291]. The relative intensities of the hk0 reflections due to the two types of constituent layers are strongly influenced by the foil thickness. Stacking variants along the c axis are frequently observed and strongly complicate the diffraction patterns. Under particular conditions of thickness and defocus, high-resolution images are shown to reflect the varying degree of coincidence of the atom columns in the misfit layers and thus they directly reveal the incommensurate misfit.

1. Introduction

In paper I (Meetsma, Wiegers, Haange & de Boer, 1989) the structure determination by means of X-ray diffraction from single crystals of the compound $(SnS)_{1\cdot17}NbS_2$, 'SnNbS₃', a member of the series

 MTX_3 (M = Sn, Pb; T = Ti, V, Nb, Ta; X = S, Se), was reported. The compound was found to consist of a periodic alternation of SnS layers and NbS, layers along a common c axis (Fig. 3 of paper I). The SnS layers have a slightly deformed NaCl-type structure, whereas the NbS₂ layers have the hexagonal (trigonal prismatic) NbS₂-2H structure. Both structures can be described with reference to Ccentred orthorhombic unit cells with lattice parameters: a = 5.673, b = 5.750, c = 11.760 Å for SnS and a' = 3.321, b' = 5.752, c' = 11.763 Å for NbS₂. The orientation relationship is: $(001)_{SnS} || (001)_{NbS_2}$; $[010]_{sns} || [010]_{NbS_2}$. The unit meshes in the plane of the layers fit along the b direction; however, along the *a* direction there is an obvious misfit. The ratio a/a' is approximately 12/7, but in actual fact it may be incommensurate.

Thus far the only electron microscopy study, and in fact also the only structure determination, of a misfit layer compound containing a transition-metal dichalcogenide was reported for $(LaS)_{1.20}CrS_2$, 'LaCrS₃' (Kato, Kawada & Takahashi, 1977; Otero-Diaz, Fitzgerald, Williams & Hyde, 1985). In the present investigation of SnNbS₃, electron diffraction patterns are reported which are very similar to those for LaCrS₃ (Otero-Diaz *et al.*, 1985); furthermore, and in contrast with the former study, high-resolution images could be obtained which clearly reveal the incommensurate misfit in the plane of the layers.

© 1989 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.